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Extraction of Structure and Content  

from the Edgar Database: A Template-Based Approach 

 

Abstract: This paper presents a template-based approach to extract data from the 

EDGAR database. A set of heuristic-based templates is used to configure the 

trainable system in order to have one type of EDGAR filings processed in a single 

configuration. Such configurability is highly desirable as it adds expendability 

and flexibility to this system. The template-based approach also enables the 

system to extract both structural information and content from the filings in the 

EDGAR database. The ability to extract structural information from a section or a 

complete filing makes it possible to collect data from real-world documents for 

users of financial data in both academia and industry. We use the income 

statement section of 10-K filings to illustrate the system and the utilization of the 

template-based approach.   

Keywords: EDGAR, document structure, knowledge engineering  
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INTRODUCTION 

Motivation 

Advances of information technology such as XML are transforming the 

organization, storage and retrieval of information. This transformation inevitably 

changes the preparation, dissemination and use of accounting information. 

Document structure determines the understandability, accessibility and retrieval 

precision of a digital document (Fisher 2004). In the accounting domain, table-like 

text bodies (mostly financial statements) located in financial reports are the core 

vehicles of accounting information, and their structures are critical to the effective 

delivery of accounting information (e.g. Maines and McDaniel, 2000). However, 

without a thorough examination of the diversified structures of financial 

statements used in real world, the required understanding of relevant issues is 

impossible to gain. 

Additionally, the development of digital accounting standards and languages 

such as XBRL also invites investigation into the structure of financial statements. 

For instance, Bovee et al. (2002) show that the rigid structure adopted by the first 

version of XBRL Taxonomy: Financial Reporting for Commercial and Industrial 

Companies – US GAAP (XBRL 2000) cannot accommodate the diversified 

structures of financial statements, particularly the income statement. Therefore, a 

thorough examination of the structures of financial statements used in the real 
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world can help the accounting profession to gain the insight in the diversity of the 

structures of financial statements.  

Moreover, the dramatic shift of standards for the XBRL taxonomy from rigid to 

virtually no structure reflects the fact that appropriate design of financial statements 

and reports in a digital format is extremely challenging. This fact in turn demonstrates 

the importance of a profound understanding of the structure of financial reports and 

the usefulness of such understanding to practitioners.  

Research projects in accounting such as FRAANK aim at the extraction of 

accounting numbers but not their organization (structure) that includes grouping, 

sub-totals, etc. The extractions of structures in accounting research were typically 

carried out manually on small collections of financial statements (e.g. Bovee et al. 

2002). Analyses on the structures of large collections of financial reports can 

examine the structural issues more thoroughly and thus add complementary 

evidence to the existing literature. However, such large-scale analyses are infeasible 

if not aided by computer programs that can automatically or semi-automatically 

extract the structural information from financial statements. In this paper, we 

contend that such computer aided extraction of the structure of financial reports is 

attainable, and attempt to design a system that accomplishes the extraction tasks by 

employing a template-based approach. 
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The Tasks and Challenges 

The technical difficulties of applying computer-aided analysis of the structure 

of financial reports is primarily posed by the source and format of the reports -- The 

Electronic Data Gathering, Analysis, and Retrieval System (EDGAR)
5

 (U.S. 

Securities and Exchange Commission, 2003a 2003b) is maintained by the Securities 

and Exchange Commission (SEC). EDGAR is essentially the only free 

comprehensive source of electronic financial reports. Virtually all the analyses that 

require large number of financial reports
6
 use the electronic filings from the 

EDGAR database or value-added tools based on EDGAR. Even though EDGAR 

has become the dominant source of financial reports to the general public, most of 

these financial reports are virtually unstructured free-form texts
7
 -- a format that is 

extremely challenging for computer programs to parse and understand.  

The extraction of the structure of financial statements and similar table-like text 

blocks must start with the location of these blocks in the financial reports. Such 

locating requires an understanding and extraction of the structure of the EDGAR 

filings. Only when the target block is located in the EDGAR filing, and the 

completeness and integrity of this block are preserved, the extraction of structural 

information from the block becomes feasible. When the structure of the table-like text 

block is extracted, the structural details such as the relationships between its line 

items and the sub-lists or sub-tables nested in the block must be captured. In addition, 

                                                           
5
 Gerdes (2003) provides a thorough review of the EDGAR database. 

6
 EDGAR extraction provides “as reported” numbers as opposed to normalized data as delivered 

in COMPUSTAT. 
7
 Companies are increasingly filing with EDGAR major financial reports in HTML format, but most filings 

are still in the free-form text format. 
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the extraction of content such as financial numbers becomes much easier when the 

structure of a table-like text block is extracted and understood. Therefore, two critical 

tasks in the structural extraction must be accomplished:  

1) at the document level, to understand the structure of an EDGAR filing, 

locate the target table-like text block and extract the complete block 

with its integrity preserved, 

2) at the statement/table level, to extract the structure and content of the 

block. 

Although the two tasks seem to be trivial for a human expert, the same tasks 

are extremely challenging to automate. The first task is complicated by the great 

variability in the organization of the filings, the multiple presences of the same 

word(s) in multiple places, and the same concept expressed in several ways 

(synonyms) (Bovee et al. 2005, Kogan et al. 2001). Additionally, it  is  very 

common that one line item in a table-like text block is broken into several lines 

(multi-line parsing problem) and this factor complicates the structure of the block. 

In accounting literature, several studies address these challenges regarding the 

extraction of line items and accounting numbers (e.g. Bovee et al. 2005, Kogan et 

al. 2001, and Ferguson 1997). All these studies rely heavily on the heuristics of 

accounting knowledge. Additionally, the first task is challenged by the need for 

preservation of the integrity of the table-like text block.  

The second task is also complicated by the issues above. Moreover, the 

structure of a table carries various types of formatting attributes ranging from 
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white spaces to special characters. Furthermore, a large number of table-like text 

blocks such as financial statements typically have multiple sections and nested 

table structures. For instance, a multi-step income statement contains a number of 

sections such as revenue, cost, expenses, interest and tax expenses etc. Some of 

the sections may also be multi-level. For example, in Figure 1, Line21 to Line25 

are components of Line27 and thus this section essentially is a table/list nested in 

the income statement table. Therefore, the extraction of the structure of table-like 

text blocks imposes more rigorous requirements on the use of heuristics, and thus 

the accounting heuristics alone are insufficient to accomplish the desired tasks. 

=================== 

Insert Figure 1 

=================== 

Objectives 

In this paper, we attempt to address the challenges to the preservation and 

extraction of structures by the complete segregation of the logics for the two tasks, 

employing document structure models, and using a richer set of heuristics from 

both accounting and document structure analysis domains. In addition to the 

extraction of structural information, our system also extracts the contents (line 

items and financial numbers). Moreover, we use a template-based
8
 approach that 

                                                           
8
 The term “template” refers to the encapsulation of multiple attributes/metrics into one container -

- profile that is discussed in the system design and implementation section. 
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enables the system to be configurable and flexible. By changing the configuration 

files and repositories, the system can be configured to extract the data from the 

target table-like text blocks beyond major financial statements in EDGAR filings. 

We also carry out a sample study that configures the system to extract the 

structure and content from the income statement in 10-K filings. Our performance 

evaluation of this sample study renders high precision, recall and F-measure (all 

above 90%) in both tasks.  

In the remainder of this paper we first review the relevant literature in 

accounting and document structure analysis. We then discuss the design 

principles, framework and implementation of the system followed by a sample 

study and evaluation of its results. Finally, we discuss the contributions to the 

literature and the accounting profession, the limitations of the system, and future 

work desirable to improve the system. 

RELATED WORK 

Document Structure Model  

Except for Fisher (2004), the accounting literature rarely discusses the 

modeling of document structure. Fisher (2004) manually extracted data to 

examine the structures of financial accounting standards, used an XML DTD to 

model the structures, and made recommendation on how the structures should be 

improved. The objective of our study is to design a system that extracts structural 

information from unstructured or semi-structured documents and thus 
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complements Fisher (2004). Models used in Document Structure Analysis (DSA) 

studies better serve our objectives.  

DSA focuses on partitioning an electronic document into a hierarchy of 

physical components, a hierarchy of logical components, or both (Liang 1999, 

Wang 2002, and Klink et al. 2000). Tree-based document structure models are 

widely used in DSA studies (e.g. Liang 1999, and Klink et al. 2000). Such models 

are relatively simple to use but very desirable in the task of document structure 

extraction as they help to preserve the integrity of a logic block such as a table or 

list (Wang 2002). A typical document tree model depicts the structure of a 

document by two trees: one for the physical structure and the other one for the 

logical structure (Klink et al. 2000). Figure 2 visualizes the document tree model.  

=================== 

Insert Figure 2 

=================== 

Specific to the model of table-like text block, DSA studies are more focused 

on formalizing the procedures of: 1) table/block identification or background 

detection and 2) model the physical and logical layout of the table/block. 

Kornfield and Wattecamps (1998) develop a system that infers the structure of 

financial statements by using the logic tree model. Their system is essentially a 

parse-tree builder that extracts the content of the balance sheet and income 

statement to form a hierarchical tree structure. However, this system cannot locate 
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the financial statements in financial reports. Douglas et al. (1995) and Douglas and 

Hurst (1997) adopt an approach that uses the relational model to model the underlying 

representation of a table. These models of table-like structure are insufficient as they 

are two-dimensional and contain various types of spacing and special characters. 

Hence, the use of the heuristics of physical and logical attributes to enrich the models is 

inevitable to the successful extraction of table structure. 

The Use of Heuristics 

DSA studies on table structures tend to use physical attributes to design domain-

independent strategies for the modeling and extraction of table structures. Douglas and 

Hurst (1997) model the layout characteristics by “cohesions” that use attributes such as 

alpha-numeric ratio and string-length ratio to measure the "goodness of an area of a 

table.” Pyreddy and Croft (1997) employ the alignment of white space as the 

critical physical attributes of tables. Ng et al. (1999) develop a prototype system that 

uses four classes of characters to model the physical structure of tables: 1) space 

character, 2) alpha-numeric characters, 3) special characters that are not in class one 

and two, and 4) separator characters that are one of “.”, “*”, and “%.” However, the 

performance of all these systems suffers if domain specific knowledge is not provided.  

Studies on the extraction of EDGAR filings typically use logical attributes and 

accounting knowledge to extract financial numbers rather than structures. 

Ferguson (1997) describes the development of the EDGARSCAN system (PWC 

Technology Center 2003) that uses several accounting heuristics to extract the 

financial numbers from the 10-K and 10-Q filings. The Financial Reporting and 
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Auditing Agent with Net Knowledge (FRAANK) (Kogan et al. 2001) also 

extracts financial numbers from 10-K and 10-Q. FRAANK maintains a repository 

of accounting synonyms and depends heavily on these to cope with the variations 

in the structure of the financial statements. In a later FRAANK version (Bovee et 

al. 2005) the extraction of financial statements and the extraction of items from 

these statements are segregated. No algorithm or model on the location and 

extraction of the statements is reported. The domain dependent heuristics appear 

to outperform domain-independent heuristics when financial numbers rather than 

table structures are extracted. 

System Design Strategies 

DSA and Information Extraction (IE) (Appelt and Israel 1999) use the same 

system design strategies. Similar to IE, the design of DSA systems is based on 

either a Knowledge Engineering Approach (KEA) or an Automatically Trainable 

Approach (ATA) (Appelt and Israel 1999). In a KEA based system, the logic is 

developed with the aid of human experts and these experts must be familiar with 

both the IE system and its knowledge domain. In an ATA based system, no 

human expert is required to train the IE system during its execution. When an IE 

system is first built, human experts who have domain knowledge need to train the 

system on what should be extracted.  

The selection of a design strategy is fundamental as it affects the performance 

factors such as accuracy, speed, user-friendliness, etc. Essentially, the more 

heuristics are used, the more complex the system is and thus the more likely KEA 
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is to be used. Moreover, a strategy/algorithm that decides on how the acquired 

knowledge should be applied to new documents is critical to the performance of a 

system, no matter whether KEA or ATA is used. Kornfield and Wattecamps 

(1998) adopt a “crawling” strategy that converts parse trees to templates and then 

maps data directly from the statements in one company's filing to those of the 

others within an industry. FRAANK (Kogan et al. 2001) uses an exhaustive 

search strategy to match between the term to be understood and the synonyms 

stored in a relational database.  

SYSTEM DESIGN AND IMPLEMENTATION 

The design of our extraction system clearly segregates the logic that locates 

and extracts the target block from the logic that extracts the structure from the 

target block. This aims to attain a better preservation of structural integrity. In the 

logic that locates and extracts the target block, our design employs the physical 

and logical document trees used in DSA studies (Klink et al. 2000). In both 

approaches we integrate several types of physical and logical heuristics into one 

framework and thus take advantage of both the structural information and 

accounting domain-dependent information such as synonyms. Given the use of 

multiple types of heuristics and the complexity of the nested table structures of 

financial statements, we employ the KEA to take advantage of human experts’ 

knowledge bases. We also adopt a “crawling” strategy adapted from Kornfield 

and Wattecamps (1998). However, our “crawling” strategy allows continuous 

addition and calibration of the templates previously generated and tried. We 
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implement the entire system in Perl (Wall et al. 1996) for its superior capability of 

text pattern matching and processing. 

Architecture  

=================== 

Insert Figure 3 

=================== 

Figure 3 presents the architecture of our design. The system consists of two 

segregated core components: Locator and Extractor. A Data Preprocessor fetches 

EDGAR filings from a Data Repository, cleans the filings and feeds to Locator. 

Locator identifies, locates and extracts the target text blocks and stores them in 

the Repository of Extracted Blocks and determines the heuristics for locating the 

table into the auxiliary repositories. Extractor fetches the text blocks from the 

Repository of Extracted Blocks, extracts the structures with the contents and 

stores them into the Repository of Normalized Extraction. The extractor also 

stores the heuristics in auxiliary repositories. A set of Knowledge Engineering 

Toolkits (KET) are provided to aid the users in validating the results and 

calibrating the heuristics. These components are discussed in more detail in the 

remainder of this section. 

Locator  

=================== 
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Insert Figure 4 

=================== 

Locator identifies, locates and extracts the target text blocks from an EDGAR filing 

and generates the heuristics of the document model that will be partly reused by the 

structure extractor. The core function of Locator, to identify the target text block, uses a 

cocktail approach that combines both the physical and logical attributes of the EDGAR 

filings. As shown in Figure 4, a profile is used to organize and encapsulate these 

attributes for each filing. The profile consists of four types of heuristics that are based 

on the document trees. Heuristics about the physical structure of a document include 

the geometric measurements of blocks such as the sparsity of a block and the structural 

attributes of blocks such as the left and right boundaries. The logic document tree-

related heuristics include the semantics such as synonyms of the table titles and the 

text label of line items and the contextual relations between logical units.  

=================== 

Insert Table 1 

=================== 

Table 1 lists the attributes that are used in the document structure profile. Among 

these four groups of attributes, the contextual and semantic attributes play more 

important roles in identifying the target text blocks. Locator always attempts to 

use these two types of attributes first. The filings are first decomposed into logical 
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units called ITEMs following SEC's requirement on the structure of a particular 

type of filing. Locator then searches through each logic unit for sub-units that may 

be the target text block by checking which sub-unit satisfies most of the attributes 

of all four types. When the target text block is located, the text block is stored into 

the Repository of Extracted Blocks. A configuration slot that consists of the 

absolute position of the starting and ending row in the document, and the absolute 

position of the starting row of each ITEM is also stored into the same repository.  

In Locator, the processing starts with a sample pool of filings and "crawls" to 

similar filings iteratively. At the beginning of each iteration, the profiles for each 

individual filing in the sample pool are first provided by the user who is aided by 

KET. These profiles are then used by Locator as rules to generate attribute values 

from the other years' filings of the same company and companies within the same 

four-digit SIC-coded industry. The dissimilarities between the generated attribute 

values and the profiles are measured to decide if the new filing is correctly 

processed. The dissimilarities of the structural attributes are measured by whether 

they are identical or not, while the dissimilarities of geometric attributes are 

measured by the normalized absolute differences between the generated attribute 

values and the profile values.  

If the processing is successful, a configuration slot is composed and stored 

and later on the target text block is extracted and stored. Since it is possible that 

the processing fails due to the lack of comparability between the structures of two 

companies' filings even if the two are in the same four-digit SIC group, Locator is 
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designed to write the file name of the filing that failed the processing into log 

files. These logged filings are then re-sampled and the profiles based on the 

knowledge from user inputs are then added to the sample pool. After two 

iterations, it is possible that one 4-digit SIC group has multiple profiles. In the 

next iteration, Locator generates a set of attributes against each profile in the same 

SIC-coded industry and selects the set that has the least dissimilarity value.  

Extractor  

=================== 

Insert Table 2 

=================== 

 The architecture and logic flow of Extractor share some common traits with 

those of Locator. However, there are several differences between the two. First, 

Extractor uses a different set of attributes. Table 2 lists the attributes from the 

profiles used in Extractor. Most of the attributes are related to the pattern of a 

string, a row or a column in a table, though Extractor reuses some of the 

attributes, especially semantic ones, from the profiles generated by Locator. In 

fact, Locator and Extractor share the same repository of synonyms. Second, after 

the profiles in the initial sample pool are built, Extractor first generates profiles 

for the filings of the same year of the other companies in the same 4-digit SIC 

industry. This "crawling" heavily relies on the semantic and contextual attributes 

collected when the initial sample pool was built. User verification and calibration 
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are performed at this stage following the same “generate-fail-learn” strategy that 

is adopted in Locator. Third, after one profile is generated for each company, 

Extractor "crawls" across filings of different years of the same company. In fact, 

in the actual execution, it has been found that very few modifications of the 

profiles are needed. Last, Extractor normalizes the extracted structures by 

replacing individual formatting with standard formatting. The normalized 

formatting attributes include indentation, spacing and the use of special 

characters. Figure 5 shows the normalized extraction.  

=================== 

Insert Figure 5 

=================== 

The critical sub-task in Extractor is to generate profiles for the companies that 

are not in the sample pool. We adopted an approach that relies heavily on logical 

attributes, especially semantics (synonyms). We further discuss the handling of 

synonyms in the Data Repositories and Synonyms section. In some cases, 

Extractor also tries to use the text label of line items, the relative position of terms 

and special characters (including white spaces) to locate table sections. The 

indentations are also measured throughout each section and replaced by a 

standard one generated by summarizing the measure of the indents of all the rows 

in the section. Finally, critical values such as the line numbers of the subtotals, 
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position of column boundaries and special characters used are stored in the 

profile.  

Data Repositories and Synonyms 

A number of data repositories are devised to store the data generated by 

different components. The system uses file-system-based repositories that write 

each profile or configuration slot in one file, store files in directories and use 

index files to search for and access the stored files. Two types of repositories are 

used in the system: main and auxiliary, as shown in Figure 3. The extractions, 

synonyms and some important intermediate data are stored in the main data 

repositories, while those used in heuristics, training and calibration are stored in 

auxiliary data repositories. 

Due to the domain-specific nature of the system and the fact that there is 

tremendous variation of wording and phrasing in financial statements, this system 

faces a very challenging task while extracting composite phrases and matching 

synonyms. For instance, the system must be able to recognize "material, labor, 

overhead and direct cost” as a synonym of the standard term "Cost of Goods 

Sold." The semantic attributes in a profile are essentially synonyms of accounting 

terms. On the surface, only those terms used in the target text block are relevant. 

However, the system must also understand the synonyms that decide the textual 

attribute values in a profile. For example, to decide the relative location of a text 

block, Locator must have the knowledge of what terms are typically used to mark 

the beginning and ending of the text block. For example, in the case of an income 
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statement block, to be certain that a text block that contains several “typical” 

terms is the “table of summary of selected financial data” rather than the income 

statement, the system needs to search for the balance sheet and the statement of 

cash flow items in the same block.  

A file-system-based repository is used to store synonyms. The repository is 

initially fed with the results of a pilot study. The variations of a standard 

accounting term are stored in a file indexed after the standard term. For instance, 

“Cost” in Figure 1 is indexed by “Cost of Goods Sold.” At the beginning of each 

execution, all the synonym files are loaded into a hash of lists in memory. During 

execution, Locator and Extractor retrieve exhaustively each hash when trying to 

set the semantic or some of the contextual attribute values. When the parsed text 

string and the stored synonyms are compared, string similarity measures
9
 and 

treatments such as stemming are used if no exact match is found. In such a case, if 

the similarity is greater than 0.90 or the stemmed term can be exactly matched, 

the term is added to the synonym repository. If the term has already been placed 

in the repository, the count of matches is incremented by one. Expert aided 

verifications are conducted to check the newly added variations between 

iterations. 

Other components  

We adopt KEA (Appelt and Israel 1999) in our design and thus add a set of 

Knowledge Engineering Toolkits (KET) for two reasons. First, the logical attributes 

                                                           
9
 Based on the Levenshtein Edit Distance (Levenshtein 1966). 
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require the profound understanding of the accounting knowledge and thus invite the 

user’s interpretation of the text blocks and terms. Second, the structural attributes can 

be very irregular and thus require a human expert's judgments. For example, some 

filers in health care industries may not include their annual financial reports in the 10-K 

filings named by their own central index key but include the reports in their parent 

companies' 10-K filings. Locator would be overwhelmingly inflated if logics that 

handle such exceptions are all added. Third, the size of the knowledge base is within 

the capacity of a human expert. We include in the KET two collections of scripts 

that are essentially the concise versions of the two core components of the system. 

These two are used to generate the profiles for the filings in the sample pool. 

Scripts that provide functions such as pattern matching, search, replace, compare, 

sort, merge, detection of duplicates, string analysis, word and character statistics, 

directory traverse and etc. are also included in the KET. These tools are used to 

clean, compare, verify and calibrate the synonyms and profiles stored in the 

repositories.  

An agent-like module runs daily to retrieve the index files on the EDGAR 

database as well as to download and store both new data feeds and index files. A 

data preprocessor prepares inputs for the core logics in order to keep the core 

logics and the data clearly segregated. The preprocessor searches though the 

index files for target filings and extracts them from the data feed files. The 

preprocessor also strips headers, special attachments such as binary image files 

and confusing SGML tags from the filings and then feeds the cleaned filings into 

Locator. 
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SAMPLE CONFIGURATION AND EVALUATION 

A sample study on the 10-K filing and particularly its income statement 

blocks is configured and evaluated. The structure of income statement is one of 

the most diversified in all types of financial statements. We also implemented a 

Structure Classifier that classifies the extracted structures of income statement 

according to the AICPA classification system of income statement formats
10

 

(AICPA 2000) and writes the results into a repository of Classified Extractions. 

The addition of these two components assists the evaluation of the performance of 

structural extraction. We ran the system over all the 74132 10-K filings filed by 

18455 companies and mutual funds between January 1994 and December 2002 

available from the EDGAR database. There were 59557 extractions stored in the 

Repository of Normalized Extractions.  

The performance evaluation was carried out in two stages: first to analyze 

how successfully Locator performed; then to measure the performance of 

Extractor. At both stages, in order to measure performance we used the commonly 

accepted methods such as precision, recall, and weighted harmonic mean of 

precision and recall (F-measure) (Baeza-Yates and Ribeiro-Neto,1999). These 

measures were initially used in information retrieval studies and then widely 

accepted by information extraction researchers. Since there is no benchmark 

system or generally accepted test data set, the evaluation does not involve a 

formal and complete comparison between our system and other existing systems. 

                                                           
10 AICPA classifies the formats of income statement into four categories: 1) multi-step with gross margin 

reported, 2) multi-step without gross margin reported, 3) single step with income tax separately reported, and 

4) single step without income tax separately reported. 



 22 

To facilitate our discussion, Bovee et al. (2005) is referenced as a very rough 

benchmark. 

In the performance measurement of Locator, precision measures how 

accurately Locator locates the income statement block in a 10-K filing by dividing 

the number of correctly extracted income statement blocks by the number of 

extracted income statement blocks ( P = the number of correct extractions/the 

number of extractions ). Recall shows the relevancy of extraction using the 

proportion of correctly extracted income statement blocks out of the 10-Ks that 

contain income statement block in the sample ( R = the number of correct 

extractions/the total possible extractions ). Usually there is a trade-off between the 

two measures. F-measure is a composite of precision and recall that balances the 

trade-off. The most commonly used F-measure gives equal weight to precision 

and recall ( F = 2PR/(P+R) ). In the evaluation, we require the extraction to be 

complete. Specifically, an extracted income statement block is deemed as correct 

only when the block preserves all the contents and format of an income statement 

block from the beginning of the first title line to the end of the last line, usually 

with special symbols such “=.” We also examined the configuration slot to see if 

the line numbers of each 10-K Item were correctly recorded. 

To analyze the performance of Locator, we randomly selected 750 filings 

(approximately 1% of all the 74132 filings). In the initial sample, 134 filings do 

not have matching extractions for several reasons. Of these filings, 113 are filed 

by filers that are not required to include financial statements in their 10-K or filed 
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the statements with other filers in the same company group. Most of them are 

financial, real estate, health care and other service institutions. Twelve of them 

have irregular file formats as the filers filed several corrections or restatements 

and the SEC compiled these with the original filings. Five are either HTML or 

PDF files and contain contents that cannot be processed
11

. Four of them contain 

other irregularities that cannot be parsed. For instance, two filings contain only 

blank place holders for the income statement table. After removing these from the 

sample, 603 income statements were extracted from the remaining 616 filings and 

584 of these were correct. Overall, the precision of Locator was 96.85% while 

recall was 94.81%. The F-measure was 95.82%. As a comparison, Bovee et al. 

(2005) reports the reliability (precision) of the table extraction logic of FRAANK 

on income statement to be 94% based on a test sample of 50 filings. The 

performance measures of Locator are summarized in Table 3. 

=================== 

Insert Table 3 

=================== 

In the second stage of the evaluation, we examined the performance of 

Extractor at the level of both statement and line items. At the statement level, we 

examined the correctness of the normalized extractions. On each normalized 

extraction we checked the following four aspects. First, we checked whether the 

                                                           
11 For example, binary files such as picture or scanned documents are inserted into ASCII text. Such inserted 

objects hinder the pattern matching. 
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normalized structure was complete by comparing it to the original text block in 

the 10-K filing. Second, we examined whether the nested table/list was complete. 

For instance, the cost section in Figure 6 must preserve the label “Cost” and all 

the items under this label in the same order as in the original text. Third, we 

examined whether the terms used in the extraction were correctly indexed by the 

correct synonym. For example, “Cost” in Figure 6 must be indexed by “Cost of 

Goods Sold.” Last, we examined whether the hierarchies were correctly 

represented in the normalization. For example, “Cost” is in the first layer while 

“Hardware Segments” is in the second layer. Out of 584 correctly extracted 

blocks, 551 (94.3%) were correctly normalized. We also examined the results 

stored in Repository of Classified Extractions to examine the correctness of the 

results and found that all the 551 correctly normalized extractions were also 

correctly classified. 

At the line item level, precision, recall and F-measure were calculated in the 

same way as with Locator. Since multiple items were measured, we also 

calculated the measures of pooled items and the average of each measure on all 

the items. In the manual evaluation, we paid special attention to the integrity of 

the items. Specifically, we examined whether our system could correctly pick out 

items that spanned over two or more lines (multi-line parsing problem). In a case 

of multiple-line parsing, the extraction is labeled correct only if the whole item is 

captured and reshaped into a single line. 
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We used 603 documents extracted in stage one and selected line items based 

on the AICPA classification system of the income statement format (AICPA 

2000). The line items we selected were those that could be used as classifiers to 

classify the income statements into the AICPA classifications. Therefore, we 

selected Revenues, Cost of Goods Sold, Gross Profit, Operating Income, Income 

Tax and Net Income to measure the performance. The precision was 97.55% 

while the recall was 96% when all the items are pooled. As a comparison, Bovee 

et al. (2005) reports the reliability (precision) of the combined parsing logic of 

FRAANK on income statement to be 91.3% based on a test sample of 50 filing. 

The results are reported in Table 4.  

=================== 

Insert Table 4 

=================== 

 

DISCUSSION AND FUTURE WORK 

This study presents the design, implementation and configuration of a 

template-based extraction system. This system employs structure models based on 

the physical and logical document trees. By using these models, we are able to 

integrate different types of document layout attributes into one “profile” and thus 

develop algorithms that take advantage of the structural and semantic information 
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carried by these attributes. Even though our system, like existing ones, relies heavily 

on heuristics, and fragments of these heuristics can be traced to different previous 

studies, our “profile” integrates these heuristics in an organized manner and makes use 

of all of these heuristics. This cocktail approach helps to improve the system's ability to 

handle the nested table/list structures that are very typical in financial reports and other 

filings stored in the EDGAR database. Also, by combining both logic and physical 

attributes, the system is more capable of handling the problem of multiple occurrences 

of the same item in one filing and thus improves the performance of locating the target 

text block. Additionally, the encapsulation of attributes into a template improves the 

configurability and flexibility of the system and thus prepares the system for the 

extraction from the rich accounting related content in the EDGAR database. 

Unlike most of the existing systems, our system completely and clearly 

segregates the logic of locating the target text block and the logic of extracting the 

structure and contents of the block. Such segregation offers several benefits. First, 

it enforces the integrity of the target text block and thus preserves the integrity of 

structure of the target text block. Second, a completely segregated target text 

block is less difficult to parse and thus the performance of the extraction from the 

block is improved. Finally, the two main components of our system are highly 

modularized and share similar logic flow with each other. This improves the 

extensibility of the system to the processing of other EDGAR filings. The 

architecture also segregates the logic from data storage and therefore improves the 

flexibility of the verification and calibration of intermediate data. Such flexibility 
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is also very desirable as it makes the validation and calibration more domain-

knowledge adaptive and thus improves the extensibility of the system. 

The above two design features enable the system to address an issue that has 

not been adequately studied: to preserve and extract the structural information 

from table-like text blocks. The ability to address this issue has two contributions. 

First, it can help to recover the structure of table-like text blocks from the free-

form text based EDGAR filings. The recovery of the structure of table-like text 

body domain adds to the accounting literature of document structure analysis 

(Fisher 2004) by extending the analysis to financial statements and tables. 

Additionally, by simply changing the configuration, the system can be used as an 

information extraction aid to researchers and practitioners. For instance, by 

configuring this system for the DEF 14A form, it can extract the executive 

compensation data and thus aid in the corporate governance studies. 

Another immediate benefit of the structure recovery is to aid researchers and 

practitioners in understanding how financial statements are formatted and how the 

diversified formats affect the effective disclosure of accounting information. 

These understandings are useful to the accounting profession in three ways. First, 

the policy makers and standard setters can gain a better understanding of the 

relevance of the financial statement format to disclosure. Additionally, the 

designers of digital accounting protocols and standards, such as XBRL, can 

reference the formats when there is a need to build structures into the protocols or 

standards.  Last, such understanding can assist various academic studies in the 
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accounting domain. For instance, experimental studies in which the presentation 

formats of financial statements are varied (e.g. Maines and McDaniel, 2000) can 

be complemented by studies that make use of structural data extracted by our 

system. 

The evaluation of the results from the sample study configuration shows that 

our template-based system is a potent research prototype that can be used in 

connection with applications where intensive parsing of the EDGAR filings in 

free-form text format is required. Moreover, the results also confirm that the 

cocktail approach used to construct the templates is effective. A rough 

comparison between the evaluation results of our system and those of FRAANK 

shows a similar precision between the two systems for the extraction of the 

financial numbers. However, very limited conclusions can be inferred from these 

numbers since the nature of the two systems and the testing scope and testing 

methods are different. 

Our system is based on the KEA and thus requires the input of accounting 

knowledge from the users. Such a requirement limits the use of the system to 

experts. The most fundamental task of improving this system is to design a more 

robust algorithm that is based on a set of well-defined rules or statistics to rank 

the multiple groups of heuristics and select the most appropriate one “on the fly” 

at run-time. Such an algorithm would significantly reduce the amount of input 

from human experts and can eventually eliminate such input and transform this 

system into an ATA based system.  
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Our system has two technical limitations. First, the system lacks a user 

friendly interface. We currently use a command-line based toolkit. This interface 

is appropriate to the needs of a small group of users who know both accounting 

and Perl programming language. Additionally, the efficiency of the file-system-

based data storage will decrease when the system is configured to process more 

types of EDGAR filings. These two limitations can be addressed in future studies 

by adding a GUI and using a relational database. 
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Table 1: The Attributes Included in the Document Structure Profile 
 

Category Attribute

Relative position of logical units

Relative position of the income statement table

Relative position of terms (e.g., CGS appears after Revenue)

The lead-in text (title, header, caption)

Text label of line items (usually Accounting Domain Specific,

e.g., CGS)

Special characters (e.g., line feed and "=".)

block sparsity (number of non-white character / total number of

characters)

block numeric-alpha ratio ( number of numeric characters / total

number of characters )

Length of the section

Structural Left and right boundary of a block

Contextual

Semantic

Geometric



 34 

Table 2: The Attributes Included in the Table Structure Profile  

Category Attribute 

Relative position of terms Contextual 

Sub-totals 

Text label of line items Semantic 

Special characters 

Left and right boundary of a column Structural 

Indentation of each row 
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Table 3: Evaluation of Locator Performance 

Panel A: Sample Selection  

Number of filings selected (approximately 1% of all the 74132 filings).   750 

Filings do not contain income statements. 113 

Filings with irregular file formats 12 

Flings with unprocessable html or pdf formats  5 

Filings with other irregularities that are unparsable.  4 

Filings parsable. 616 

Income statement extracted 603 

Income statement correctly extracted 584 

   
Panel B: Measurements      

Item Exists Extracted Correct Recall Precision F-measure 

Income statement 616 603 584 94.81% 96.85% 95.82%  
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Table 4: Evaluation of Extractor Performance 

Item Exists Extracted Correct Recall Precision F-measure 

Revenues 574 562 545 94.95% 96.98% 95.95% 

Cost of Goods Sold  383 368 360 93.99% 97.83% 95.87% 

Gross Profit 267 265 258 96.63% 97.36% 96.99% 

Operating Income 410 404 396 96.59% 98.02% 97.30% 

Income Tax 422 413 402 95.26% 97.34% 96.29% 

Net Income 595 597 584 98.15% 97.82% 97.98% 

Pooled 2651 2609 2545 96.00% 97.55% 97.98% 

Average*       95.93% 97.56% 96.73% 

* Average is the arithmetic average of Recall, Precision and F-measure 
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Figure 1*: The Income Statement Section from IBM's 1998 10-K Filing 
         012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678 

Line01:  CONSOLIDATED STATEMENT OF EARNINGS  

Line02:  International Business Machines Corporation and Subsidiary Companies 

Line03:  <TABLE> 

Line04:  <CAPTION> 

Line05:  - ------------------------------------------------------------------------------------------------- 

Line06:  (Dollars in millions except per share amounts) 

Line07:  For the year ended December 31:                        Notes      1998        1997*       1996* 

Line08:  - ------------------------------------------------------------------------------------------------- 

Line09:  <S>                                                       <C>     <C>         <C>         <C>     

Line10:  Revenue:   

Line11:  Hardware segments                                                 $35,419     $36,630     $36,634 

Line12:  Global Services segment                                            28,916      25,166      22,310 

Line13:  Software segment                                                   11,863      11,164      11,426 

Line14:  Global Financing segment                                            2,877       2,806       3,054 

Line15:  Enterprise Investments segment/Other                                2,592       2,742       2,523 

Line16:  - ------------------------------------------------------------------------------------------------- 

Line17:  Total revenue                                                      81,667      78,508      75,947 

Line18:  - ------------------------------------------------------------------------------------------------- 

Line19:  Cost:   

Line20:   

Line21:  Hardware segments                                                  24,214      23,473      22,888 

Line22:  Global Services segment                                            21,125      18,464      16,270 

Line23:  Software segment                                                    2,260       2,785       2,946 

Line24:  Global Financing segment                                            1,494       1,448       1,481 

Line25:  Enterprise Investments segment/Other                                1,702       1,729       1,823 

Line26:  - ------------------------------------------------------------------------------------------------- 

Line27:  Total cost                                                         50,795      47,899      45,408 

Line28:  - ------------------------------------------------------------------------------------------------- 

Line29:  Gross profit                                                       30,872      30,609      30,539 

Line30:  - ------------------------------------------------------------------------------------------------- 

Line31:  Operating expenses:   

Line32:   

Line33:  Selling, general and administrative                       R        16,662      16,634      16,854 

Line34:  Research, development and engineering                     S         5,046       4,877       5,089 

Line35:  - ------------------------------------------------------------------------------------------------- 

Line36:  Total operating expenses                                           21,708      21,511      21,943 

Line37:  - ------------------------------------------------------------------------------------------------- 

Line38:  Operating income                                                    9,164       9,098       8,596 

Line39:  Other income, principally interest                                    589         657         707 

Line40:  Interest expense                                          L           713         728         716 

Line41:  - ------------------------------------------------------------------------------------------------- 

Line42:  Income before income taxes                                          9,040       9,027       8,587 

Line43:  Provision for income taxes                                Q         2,712       2,934       3,158 

Line44:  - ------------------------------------------------------------------------------------------------- 

Line45:  Net income                                                          6,328       6,093       5,429 

Line46:  Preferred stock dividends                                              20          20          20 

Line47:  - ------------------------------------------------------------------------------------------------- 

Line48:  Net income applicable to common shareholders                      $ 6,308     $ 6,073     $ 5,409 

Line49:  ================================================================================================= 

Line50:  Earnings per share of common stock--basic                 T       $  6.75     $  6.18     $  5.12 

Line51:  Earnings per share of common stock--assuming dilution     T       $  6.57     $  6.01     $  5.01 

Line52:  ======================================================================================== 

*: The line and column numbers are added by the author to facilitate discussion. 
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Figure 2: Document Tree 
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Panel B: Logical Document Tree 
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Figure 3. The Architecture of the Extraction System * 
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*. The Structure Classifier and Repository of Classified Extractions are used only in the sample study. 
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Figure 4: Excerption of the Profile for HCA's 1995 10-K Filing 
Block Separator: 

 \n\n; 

Relative Position of IS: ITEM 14 

 After:  Regular Paragraph 

 Before:  Balance Sheet 

Lead-in Text: 

 <           COLUMBIA/HCA HEALTHCARE CORPORATION> 

 \s+27CONSOLIDATED STATEMENT OF INCOME 

Lead-out Text: 

 \t\s+52=======  =======  ====== 

IS Block Sparsity: 

 0.6290 

IS Block Num-Alfa Ratio: 

 0.2131 

  

Document Sparsity: 

 0.7135  

Document Num-Alfa Ratio: 

 0.0486 

 

Length of IS Block: 

 59 

Left Boundary of IS Block:  

  1 

Right Boundary of IS Block: 

 78 
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Figure 5*: Normalized Extraction of the Income Statement of IBM’s 10-K of 1998 
Normalized Raw 
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* Numerical cells omitted 

 


