
 1

Extraction of Structure and Content
123

from the Edgar Database: A Template-Based Approach

Yu Cong
4

Miklos Vasarhelyi

Alexander Kogan

1
 This paper was accepted by Associate Editor Rajendra Srivastava.

2
 The authors are appreciative of the many useful comments of visiting editor Rajendra

Srivasatava and two anonymous reviewers.
3
 The Edgar data can be obtained at http://edgar.sec.gov.

4
 Respectively, Assistant Professor Towson University, Professor Rutgers University and

Professor Rutgers University.

 2

Extraction of Structure and Content

from the Edgar Database: A Template-Based Approach

Abstract: This paper presents a template-based approach to extract data from the

EDGAR database. A set of heuristic-based templates is used to configure the

trainable system in order to have one type of EDGAR filings processed in a single

configuration. Such configurability is highly desirable as it adds expendability

and flexibility to this system. The template-based approach also enables the

system to extract both structural information and content from the filings in the

EDGAR database. The ability to extract structural information from a section or a

complete filing makes it possible to collect data from real-world documents for

users of financial data in both academia and industry. We use the income

statement section of 10-K filings to illustrate the system and the utilization of the

template-based approach.

Keywords: EDGAR, document structure, knowledge engineering

 3

INTRODUCTION

Motivation

Advances of information technology such as XML are transforming the

organization, storage and retrieval of information. This transformation inevitably

changes the preparation, dissemination and use of accounting information.

Document structure determines the understandability, accessibility and retrieval

precision of a digital document (Fisher 2004). In the accounting domain, table-like

text bodies (mostly financial statements) located in financial reports are the core

vehicles of accounting information, and their structures are critical to the effective

delivery of accounting information (e.g. Maines and McDaniel, 2000). However,

without a thorough examination of the diversified structures of financial

statements used in real world, the required understanding of relevant issues is

impossible to gain.

Additionally, the development of digital accounting standards and languages

such as XBRL also invites investigation into the structure of financial statements.

For instance, Bovee et al. (2002) show that the rigid structure adopted by the first

version of XBRL Taxonomy: Financial Reporting for Commercial and Industrial

Companies – US GAAP (XBRL 2000) cannot accommodate the diversified

structures of financial statements, particularly the income statement. Therefore, a

thorough examination of the structures of financial statements used in the real

 4

world can help the accounting profession to gain the insight in the diversity of the

structures of financial statements.

Moreover, the dramatic shift of standards for the XBRL taxonomy from rigid to

virtually no structure reflects the fact that appropriate design of financial statements

and reports in a digital format is extremely challenging. This fact in turn demonstrates

the importance of a profound understanding of the structure of financial reports and

the usefulness of such understanding to practitioners.

Research projects in accounting such as FRAANK aim at the extraction of

accounting numbers but not their organization (structure) that includes grouping,

sub-totals, etc. The extractions of structures in accounting research were typically

carried out manually on small collections of financial statements (e.g. Bovee et al.

2002). Analyses on the structures of large collections of financial reports can

examine the structural issues more thoroughly and thus add complementary

evidence to the existing literature. However, such large-scale analyses are infeasible

if not aided by computer programs that can automatically or semi-automatically

extract the structural information from financial statements. In this paper, we

contend that such computer aided extraction of the structure of financial reports is

attainable, and attempt to design a system that accomplishes the extraction tasks by

employing a template-based approach.

 5

The Tasks and Challenges

The technical difficulties of applying computer-aided analysis of the structure

of financial reports is primarily posed by the source and format of the reports -- The

Electronic Data Gathering, Analysis, and Retrieval System (EDGAR)
5

 (U.S.

Securities and Exchange Commission, 2003a 2003b) is maintained by the Securities

and Exchange Commission (SEC). EDGAR is essentially the only free

comprehensive source of electronic financial reports. Virtually all the analyses that

require large number of financial reports
6
 use the electronic filings from the

EDGAR database or value-added tools based on EDGAR. Even though EDGAR

has become the dominant source of financial reports to the general public, most of

these financial reports are virtually unstructured free-form texts
7
 -- a format that is

extremely challenging for computer programs to parse and understand.

The extraction of the structure of financial statements and similar table-like text

blocks must start with the location of these blocks in the financial reports. Such

locating requires an understanding and extraction of the structure of the EDGAR

filings. Only when the target block is located in the EDGAR filing, and the

completeness and integrity of this block are preserved, the extraction of structural

information from the block becomes feasible. When the structure of the table-like text

block is extracted, the structural details such as the relationships between its line

items and the sub-lists or sub-tables nested in the block must be captured. In addition,

5
 Gerdes (2003) provides a thorough review of the EDGAR database.

6
 EDGAR extraction provides “as reported” numbers as opposed to normalized data as delivered

in COMPUSTAT.
7
 Companies are increasingly filing with EDGAR major financial reports in HTML format, but most filings

are still in the free-form text format.

 6

the extraction of content such as financial numbers becomes much easier when the

structure of a table-like text block is extracted and understood. Therefore, two critical

tasks in the structural extraction must be accomplished:

1) at the document level, to understand the structure of an EDGAR filing,

locate the target table-like text block and extract the complete block

with its integrity preserved,

2) at the statement/table level, to extract the structure and content of the

block.

Although the two tasks seem to be trivial for a human expert, the same tasks

are extremely challenging to automate. The first task is complicated by the great

variability in the organization of the filings, the multiple presences of the same

word(s) in multiple places, and the same concept expressed in several ways

(synonyms) (Bovee et al. 2005, Kogan et al. 2001). Additionally, it is very

common that one line item in a table-like text block is broken into several lines

(multi-line parsing problem) and this factor complicates the structure of the block.

In accounting literature, several studies address these challenges regarding the

extraction of line items and accounting numbers (e.g. Bovee et al. 2005, Kogan et

al. 2001, and Ferguson 1997). All these studies rely heavily on the heuristics of

accounting knowledge. Additionally, the first task is challenged by the need for

preservation of the integrity of the table-like text block.

The second task is also complicated by the issues above. Moreover, the

structure of a table carries various types of formatting attributes ranging from

 7

white spaces to special characters. Furthermore, a large number of table-like text

blocks such as financial statements typically have multiple sections and nested

table structures. For instance, a multi-step income statement contains a number of

sections such as revenue, cost, expenses, interest and tax expenses etc. Some of

the sections may also be multi-level. For example, in Figure 1, Line21 to Line25

are components of Line27 and thus this section essentially is a table/list nested in

the income statement table. Therefore, the extraction of the structure of table-like

text blocks imposes more rigorous requirements on the use of heuristics, and thus

the accounting heuristics alone are insufficient to accomplish the desired tasks.

===================

Insert Figure 1

===================

Objectives

In this paper, we attempt to address the challenges to the preservation and

extraction of structures by the complete segregation of the logics for the two tasks,

employing document structure models, and using a richer set of heuristics from

both accounting and document structure analysis domains. In addition to the

extraction of structural information, our system also extracts the contents (line

items and financial numbers). Moreover, we use a template-based
8
 approach that

8
 The term “template” refers to the encapsulation of multiple attributes/metrics into one container -

- profile that is discussed in the system design and implementation section.

 8

enables the system to be configurable and flexible. By changing the configuration

files and repositories, the system can be configured to extract the data from the

target table-like text blocks beyond major financial statements in EDGAR filings.

We also carry out a sample study that configures the system to extract the

structure and content from the income statement in 10-K filings. Our performance

evaluation of this sample study renders high precision, recall and F-measure (all

above 90%) in both tasks.

In the remainder of this paper we first review the relevant literature in

accounting and document structure analysis. We then discuss the design

principles, framework and implementation of the system followed by a sample

study and evaluation of its results. Finally, we discuss the contributions to the

literature and the accounting profession, the limitations of the system, and future

work desirable to improve the system.

RELATED WORK

Document Structure Model

Except for Fisher (2004), the accounting literature rarely discusses the

modeling of document structure. Fisher (2004) manually extracted data to

examine the structures of financial accounting standards, used an XML DTD to

model the structures, and made recommendation on how the structures should be

improved. The objective of our study is to design a system that extracts structural

information from unstructured or semi-structured documents and thus

 9

complements Fisher (2004). Models used in Document Structure Analysis (DSA)

studies better serve our objectives.

DSA focuses on partitioning an electronic document into a hierarchy of

physical components, a hierarchy of logical components, or both (Liang 1999,

Wang 2002, and Klink et al. 2000). Tree-based document structure models are

widely used in DSA studies (e.g. Liang 1999, and Klink et al. 2000). Such models

are relatively simple to use but very desirable in the task of document structure

extraction as they help to preserve the integrity of a logic block such as a table or

list (Wang 2002). A typical document tree model depicts the structure of a

document by two trees: one for the physical structure and the other one for the

logical structure (Klink et al. 2000). Figure 2 visualizes the document tree model.

===================

Insert Figure 2

===================

Specific to the model of table-like text block, DSA studies are more focused

on formalizing the procedures of: 1) table/block identification or background

detection and 2) model the physical and logical layout of the table/block.

Kornfield and Wattecamps (1998) develop a system that infers the structure of

financial statements by using the logic tree model. Their system is essentially a

parse-tree builder that extracts the content of the balance sheet and income

statement to form a hierarchical tree structure. However, this system cannot locate

 10

the financial statements in financial reports. Douglas et al. (1995) and Douglas and

Hurst (1997) adopt an approach that uses the relational model to model the underlying

representation of a table. These models of table-like structure are insufficient as they

are two-dimensional and contain various types of spacing and special characters.

Hence, the use of the heuristics of physical and logical attributes to enrich the models is

inevitable to the successful extraction of table structure.

The Use of Heuristics

DSA studies on table structures tend to use physical attributes to design domain-

independent strategies for the modeling and extraction of table structures. Douglas and

Hurst (1997) model the layout characteristics by “cohesions” that use attributes such as

alpha-numeric ratio and string-length ratio to measure the "goodness of an area of a

table.” Pyreddy and Croft (1997) employ the alignment of white space as the

critical physical attributes of tables. Ng et al. (1999) develop a prototype system that

uses four classes of characters to model the physical structure of tables: 1) space

character, 2) alpha-numeric characters, 3) special characters that are not in class one

and two, and 4) separator characters that are one of “.”, “*”, and “%.” However, the

performance of all these systems suffers if domain specific knowledge is not provided.

Studies on the extraction of EDGAR filings typically use logical attributes and

accounting knowledge to extract financial numbers rather than structures.

Ferguson (1997) describes the development of the EDGARSCAN system (PWC

Technology Center 2003) that uses several accounting heuristics to extract the

financial numbers from the 10-K and 10-Q filings. The Financial Reporting and

 11

Auditing Agent with Net Knowledge (FRAANK) (Kogan et al. 2001) also

extracts financial numbers from 10-K and 10-Q. FRAANK maintains a repository

of accounting synonyms and depends heavily on these to cope with the variations

in the structure of the financial statements. In a later FRAANK version (Bovee et

al. 2005) the extraction of financial statements and the extraction of items from

these statements are segregated. No algorithm or model on the location and

extraction of the statements is reported. The domain dependent heuristics appear

to outperform domain-independent heuristics when financial numbers rather than

table structures are extracted.

System Design Strategies

DSA and Information Extraction (IE) (Appelt and Israel 1999) use the same

system design strategies. Similar to IE, the design of DSA systems is based on

either a Knowledge Engineering Approach (KEA) or an Automatically Trainable

Approach (ATA) (Appelt and Israel 1999). In a KEA based system, the logic is

developed with the aid of human experts and these experts must be familiar with

both the IE system and its knowledge domain. In an ATA based system, no

human expert is required to train the IE system during its execution. When an IE

system is first built, human experts who have domain knowledge need to train the

system on what should be extracted.

The selection of a design strategy is fundamental as it affects the performance

factors such as accuracy, speed, user-friendliness, etc. Essentially, the more

heuristics are used, the more complex the system is and thus the more likely KEA

 12

is to be used. Moreover, a strategy/algorithm that decides on how the acquired

knowledge should be applied to new documents is critical to the performance of a

system, no matter whether KEA or ATA is used. Kornfield and Wattecamps

(1998) adopt a “crawling” strategy that converts parse trees to templates and then

maps data directly from the statements in one company's filing to those of the

others within an industry. FRAANK (Kogan et al. 2001) uses an exhaustive

search strategy to match between the term to be understood and the synonyms

stored in a relational database.

SYSTEM DESIGN AND IMPLEMENTATION

The design of our extraction system clearly segregates the logic that locates

and extracts the target block from the logic that extracts the structure from the

target block. This aims to attain a better preservation of structural integrity. In the

logic that locates and extracts the target block, our design employs the physical

and logical document trees used in DSA studies (Klink et al. 2000). In both

approaches we integrate several types of physical and logical heuristics into one

framework and thus take advantage of both the structural information and

accounting domain-dependent information such as synonyms. Given the use of

multiple types of heuristics and the complexity of the nested table structures of

financial statements, we employ the KEA to take advantage of human experts’

knowledge bases. We also adopt a “crawling” strategy adapted from Kornfield

and Wattecamps (1998). However, our “crawling” strategy allows continuous

addition and calibration of the templates previously generated and tried. We

 13

implement the entire system in Perl (Wall et al. 1996) for its superior capability of

text pattern matching and processing.

Architecture

===================

Insert Figure 3

===================

Figure 3 presents the architecture of our design. The system consists of two

segregated core components: Locator and Extractor. A Data Preprocessor fetches

EDGAR filings from a Data Repository, cleans the filings and feeds to Locator.

Locator identifies, locates and extracts the target text blocks and stores them in

the Repository of Extracted Blocks and determines the heuristics for locating the

table into the auxiliary repositories. Extractor fetches the text blocks from the

Repository of Extracted Blocks, extracts the structures with the contents and

stores them into the Repository of Normalized Extraction. The extractor also

stores the heuristics in auxiliary repositories. A set of Knowledge Engineering

Toolkits (KET) are provided to aid the users in validating the results and

calibrating the heuristics. These components are discussed in more detail in the

remainder of this section.

Locator

===================

 14

Insert Figure 4

===================

Locator identifies, locates and extracts the target text blocks from an EDGAR filing

and generates the heuristics of the document model that will be partly reused by the

structure extractor. The core function of Locator, to identify the target text block, uses a

cocktail approach that combines both the physical and logical attributes of the EDGAR

filings. As shown in Figure 4, a profile is used to organize and encapsulate these

attributes for each filing. The profile consists of four types of heuristics that are based

on the document trees. Heuristics about the physical structure of a document include

the geometric measurements of blocks such as the sparsity of a block and the structural

attributes of blocks such as the left and right boundaries. The logic document tree-

related heuristics include the semantics such as synonyms of the table titles and the

text label of line items and the contextual relations between logical units.

===================

Insert Table 1

===================

Table 1 lists the attributes that are used in the document structure profile. Among

these four groups of attributes, the contextual and semantic attributes play more

important roles in identifying the target text blocks. Locator always attempts to

use these two types of attributes first. The filings are first decomposed into logical

 15

units called ITEMs following SEC's requirement on the structure of a particular

type of filing. Locator then searches through each logic unit for sub-units that may

be the target text block by checking which sub-unit satisfies most of the attributes

of all four types. When the target text block is located, the text block is stored into

the Repository of Extracted Blocks. A configuration slot that consists of the

absolute position of the starting and ending row in the document, and the absolute

position of the starting row of each ITEM is also stored into the same repository.

In Locator, the processing starts with a sample pool of filings and "crawls" to

similar filings iteratively. At the beginning of each iteration, the profiles for each

individual filing in the sample pool are first provided by the user who is aided by

KET. These profiles are then used by Locator as rules to generate attribute values

from the other years' filings of the same company and companies within the same

four-digit SIC-coded industry. The dissimilarities between the generated attribute

values and the profiles are measured to decide if the new filing is correctly

processed. The dissimilarities of the structural attributes are measured by whether

they are identical or not, while the dissimilarities of geometric attributes are

measured by the normalized absolute differences between the generated attribute

values and the profile values.

If the processing is successful, a configuration slot is composed and stored

and later on the target text block is extracted and stored. Since it is possible that

the processing fails due to the lack of comparability between the structures of two

companies' filings even if the two are in the same four-digit SIC group, Locator is

 16

designed to write the file name of the filing that failed the processing into log

files. These logged filings are then re-sampled and the profiles based on the

knowledge from user inputs are then added to the sample pool. After two

iterations, it is possible that one 4-digit SIC group has multiple profiles. In the

next iteration, Locator generates a set of attributes against each profile in the same

SIC-coded industry and selects the set that has the least dissimilarity value.

Extractor

===================

Insert Table 2

===================

 The architecture and logic flow of Extractor share some common traits with

those of Locator. However, there are several differences between the two. First,

Extractor uses a different set of attributes. Table 2 lists the attributes from the

profiles used in Extractor. Most of the attributes are related to the pattern of a

string, a row or a column in a table, though Extractor reuses some of the

attributes, especially semantic ones, from the profiles generated by Locator. In

fact, Locator and Extractor share the same repository of synonyms. Second, after

the profiles in the initial sample pool are built, Extractor first generates profiles

for the filings of the same year of the other companies in the same 4-digit SIC

industry. This "crawling" heavily relies on the semantic and contextual attributes

collected when the initial sample pool was built. User verification and calibration

 17

are performed at this stage following the same “generate-fail-learn” strategy that

is adopted in Locator. Third, after one profile is generated for each company,

Extractor "crawls" across filings of different years of the same company. In fact,

in the actual execution, it has been found that very few modifications of the

profiles are needed. Last, Extractor normalizes the extracted structures by

replacing individual formatting with standard formatting. The normalized

formatting attributes include indentation, spacing and the use of special

characters. Figure 5 shows the normalized extraction.

===================

Insert Figure 5

===================

The critical sub-task in Extractor is to generate profiles for the companies that

are not in the sample pool. We adopted an approach that relies heavily on logical

attributes, especially semantics (synonyms). We further discuss the handling of

synonyms in the Data Repositories and Synonyms section. In some cases,

Extractor also tries to use the text label of line items, the relative position of terms

and special characters (including white spaces) to locate table sections. The

indentations are also measured throughout each section and replaced by a

standard one generated by summarizing the measure of the indents of all the rows

in the section. Finally, critical values such as the line numbers of the subtotals,

 18

position of column boundaries and special characters used are stored in the

profile.

Data Repositories and Synonyms

A number of data repositories are devised to store the data generated by

different components. The system uses file-system-based repositories that write

each profile or configuration slot in one file, store files in directories and use

index files to search for and access the stored files. Two types of repositories are

used in the system: main and auxiliary, as shown in Figure 3. The extractions,

synonyms and some important intermediate data are stored in the main data

repositories, while those used in heuristics, training and calibration are stored in

auxiliary data repositories.

Due to the domain-specific nature of the system and the fact that there is

tremendous variation of wording and phrasing in financial statements, this system

faces a very challenging task while extracting composite phrases and matching

synonyms. For instance, the system must be able to recognize "material, labor,

overhead and direct cost” as a synonym of the standard term "Cost of Goods

Sold." The semantic attributes in a profile are essentially synonyms of accounting

terms. On the surface, only those terms used in the target text block are relevant.

However, the system must also understand the synonyms that decide the textual

attribute values in a profile. For example, to decide the relative location of a text

block, Locator must have the knowledge of what terms are typically used to mark

the beginning and ending of the text block. For example, in the case of an income

 19

statement block, to be certain that a text block that contains several “typical”

terms is the “table of summary of selected financial data” rather than the income

statement, the system needs to search for the balance sheet and the statement of

cash flow items in the same block.

A file-system-based repository is used to store synonyms. The repository is

initially fed with the results of a pilot study. The variations of a standard

accounting term are stored in a file indexed after the standard term. For instance,

“Cost” in Figure 1 is indexed by “Cost of Goods Sold.” At the beginning of each

execution, all the synonym files are loaded into a hash of lists in memory. During

execution, Locator and Extractor retrieve exhaustively each hash when trying to

set the semantic or some of the contextual attribute values. When the parsed text

string and the stored synonyms are compared, string similarity measures
9
 and

treatments such as stemming are used if no exact match is found. In such a case, if

the similarity is greater than 0.90 or the stemmed term can be exactly matched,

the term is added to the synonym repository. If the term has already been placed

in the repository, the count of matches is incremented by one. Expert aided

verifications are conducted to check the newly added variations between

iterations.

Other components

We adopt KEA (Appelt and Israel 1999) in our design and thus add a set of

Knowledge Engineering Toolkits (KET) for two reasons. First, the logical attributes

9
 Based on the Levenshtein Edit Distance (Levenshtein 1966).

 20

require the profound understanding of the accounting knowledge and thus invite the

user’s interpretation of the text blocks and terms. Second, the structural attributes can

be very irregular and thus require a human expert's judgments. For example, some

filers in health care industries may not include their annual financial reports in the 10-K

filings named by their own central index key but include the reports in their parent

companies' 10-K filings. Locator would be overwhelmingly inflated if logics that

handle such exceptions are all added. Third, the size of the knowledge base is within

the capacity of a human expert. We include in the KET two collections of scripts

that are essentially the concise versions of the two core components of the system.

These two are used to generate the profiles for the filings in the sample pool.

Scripts that provide functions such as pattern matching, search, replace, compare,

sort, merge, detection of duplicates, string analysis, word and character statistics,

directory traverse and etc. are also included in the KET. These tools are used to

clean, compare, verify and calibrate the synonyms and profiles stored in the

repositories.

An agent-like module runs daily to retrieve the index files on the EDGAR

database as well as to download and store both new data feeds and index files. A

data preprocessor prepares inputs for the core logics in order to keep the core

logics and the data clearly segregated. The preprocessor searches though the

index files for target filings and extracts them from the data feed files. The

preprocessor also strips headers, special attachments such as binary image files

and confusing SGML tags from the filings and then feeds the cleaned filings into

Locator.

 21

SAMPLE CONFIGURATION AND EVALUATION

A sample study on the 10-K filing and particularly its income statement

blocks is configured and evaluated. The structure of income statement is one of

the most diversified in all types of financial statements. We also implemented a

Structure Classifier that classifies the extracted structures of income statement

according to the AICPA classification system of income statement formats
10

(AICPA 2000) and writes the results into a repository of Classified Extractions.

The addition of these two components assists the evaluation of the performance of

structural extraction. We ran the system over all the 74132 10-K filings filed by

18455 companies and mutual funds between January 1994 and December 2002

available from the EDGAR database. There were 59557 extractions stored in the

Repository of Normalized Extractions.

The performance evaluation was carried out in two stages: first to analyze

how successfully Locator performed; then to measure the performance of

Extractor. At both stages, in order to measure performance we used the commonly

accepted methods such as precision, recall, and weighted harmonic mean of

precision and recall (F-measure) (Baeza-Yates and Ribeiro-Neto,1999). These

measures were initially used in information retrieval studies and then widely

accepted by information extraction researchers. Since there is no benchmark

system or generally accepted test data set, the evaluation does not involve a

formal and complete comparison between our system and other existing systems.

10 AICPA classifies the formats of income statement into four categories: 1) multi-step with gross margin

reported, 2) multi-step without gross margin reported, 3) single step with income tax separately reported, and

4) single step without income tax separately reported.

 22

To facilitate our discussion, Bovee et al. (2005) is referenced as a very rough

benchmark.

In the performance measurement of Locator, precision measures how

accurately Locator locates the income statement block in a 10-K filing by dividing

the number of correctly extracted income statement blocks by the number of

extracted income statement blocks (P = the number of correct extractions/the

number of extractions). Recall shows the relevancy of extraction using the

proportion of correctly extracted income statement blocks out of the 10-Ks that

contain income statement block in the sample (R = the number of correct

extractions/the total possible extractions). Usually there is a trade-off between the

two measures. F-measure is a composite of precision and recall that balances the

trade-off. The most commonly used F-measure gives equal weight to precision

and recall (F = 2PR/(P+R)). In the evaluation, we require the extraction to be

complete. Specifically, an extracted income statement block is deemed as correct

only when the block preserves all the contents and format of an income statement

block from the beginning of the first title line to the end of the last line, usually

with special symbols such “=.” We also examined the configuration slot to see if

the line numbers of each 10-K Item were correctly recorded.

To analyze the performance of Locator, we randomly selected 750 filings

(approximately 1% of all the 74132 filings). In the initial sample, 134 filings do

not have matching extractions for several reasons. Of these filings, 113 are filed

by filers that are not required to include financial statements in their 10-K or filed

 23

the statements with other filers in the same company group. Most of them are

financial, real estate, health care and other service institutions. Twelve of them

have irregular file formats as the filers filed several corrections or restatements

and the SEC compiled these with the original filings. Five are either HTML or

PDF files and contain contents that cannot be processed
11

. Four of them contain

other irregularities that cannot be parsed. For instance, two filings contain only

blank place holders for the income statement table. After removing these from the

sample, 603 income statements were extracted from the remaining 616 filings and

584 of these were correct. Overall, the precision of Locator was 96.85% while

recall was 94.81%. The F-measure was 95.82%. As a comparison, Bovee et al.

(2005) reports the reliability (precision) of the table extraction logic of FRAANK

on income statement to be 94% based on a test sample of 50 filings. The

performance measures of Locator are summarized in Table 3.

===================

Insert Table 3

===================

In the second stage of the evaluation, we examined the performance of

Extractor at the level of both statement and line items. At the statement level, we

examined the correctness of the normalized extractions. On each normalized

extraction we checked the following four aspects. First, we checked whether the

11 For example, binary files such as picture or scanned documents are inserted into ASCII text. Such inserted

objects hinder the pattern matching.

 24

normalized structure was complete by comparing it to the original text block in

the 10-K filing. Second, we examined whether the nested table/list was complete.

For instance, the cost section in Figure 6 must preserve the label “Cost” and all

the items under this label in the same order as in the original text. Third, we

examined whether the terms used in the extraction were correctly indexed by the

correct synonym. For example, “Cost” in Figure 6 must be indexed by “Cost of

Goods Sold.” Last, we examined whether the hierarchies were correctly

represented in the normalization. For example, “Cost” is in the first layer while

“Hardware Segments” is in the second layer. Out of 584 correctly extracted

blocks, 551 (94.3%) were correctly normalized. We also examined the results

stored in Repository of Classified Extractions to examine the correctness of the

results and found that all the 551 correctly normalized extractions were also

correctly classified.

At the line item level, precision, recall and F-measure were calculated in the

same way as with Locator. Since multiple items were measured, we also

calculated the measures of pooled items and the average of each measure on all

the items. In the manual evaluation, we paid special attention to the integrity of

the items. Specifically, we examined whether our system could correctly pick out

items that spanned over two or more lines (multi-line parsing problem). In a case

of multiple-line parsing, the extraction is labeled correct only if the whole item is

captured and reshaped into a single line.

 25

We used 603 documents extracted in stage one and selected line items based

on the AICPA classification system of the income statement format (AICPA

2000). The line items we selected were those that could be used as classifiers to

classify the income statements into the AICPA classifications. Therefore, we

selected Revenues, Cost of Goods Sold, Gross Profit, Operating Income, Income

Tax and Net Income to measure the performance. The precision was 97.55%

while the recall was 96% when all the items are pooled. As a comparison, Bovee

et al. (2005) reports the reliability (precision) of the combined parsing logic of

FRAANK on income statement to be 91.3% based on a test sample of 50 filing.

The results are reported in Table 4.

===================

Insert Table 4

===================

DISCUSSION AND FUTURE WORK

This study presents the design, implementation and configuration of a

template-based extraction system. This system employs structure models based on

the physical and logical document trees. By using these models, we are able to

integrate different types of document layout attributes into one “profile” and thus

develop algorithms that take advantage of the structural and semantic information

 26

carried by these attributes. Even though our system, like existing ones, relies heavily

on heuristics, and fragments of these heuristics can be traced to different previous

studies, our “profile” integrates these heuristics in an organized manner and makes use

of all of these heuristics. This cocktail approach helps to improve the system's ability to

handle the nested table/list structures that are very typical in financial reports and other

filings stored in the EDGAR database. Also, by combining both logic and physical

attributes, the system is more capable of handling the problem of multiple occurrences

of the same item in one filing and thus improves the performance of locating the target

text block. Additionally, the encapsulation of attributes into a template improves the

configurability and flexibility of the system and thus prepares the system for the

extraction from the rich accounting related content in the EDGAR database.

Unlike most of the existing systems, our system completely and clearly

segregates the logic of locating the target text block and the logic of extracting the

structure and contents of the block. Such segregation offers several benefits. First,

it enforces the integrity of the target text block and thus preserves the integrity of

structure of the target text block. Second, a completely segregated target text

block is less difficult to parse and thus the performance of the extraction from the

block is improved. Finally, the two main components of our system are highly

modularized and share similar logic flow with each other. This improves the

extensibility of the system to the processing of other EDGAR filings. The

architecture also segregates the logic from data storage and therefore improves the

flexibility of the verification and calibration of intermediate data. Such flexibility

 27

is also very desirable as it makes the validation and calibration more domain-

knowledge adaptive and thus improves the extensibility of the system.

The above two design features enable the system to address an issue that has

not been adequately studied: to preserve and extract the structural information

from table-like text blocks. The ability to address this issue has two contributions.

First, it can help to recover the structure of table-like text blocks from the free-

form text based EDGAR filings. The recovery of the structure of table-like text

body domain adds to the accounting literature of document structure analysis

(Fisher 2004) by extending the analysis to financial statements and tables.

Additionally, by simply changing the configuration, the system can be used as an

information extraction aid to researchers and practitioners. For instance, by

configuring this system for the DEF 14A form, it can extract the executive

compensation data and thus aid in the corporate governance studies.

Another immediate benefit of the structure recovery is to aid researchers and

practitioners in understanding how financial statements are formatted and how the

diversified formats affect the effective disclosure of accounting information.

These understandings are useful to the accounting profession in three ways. First,

the policy makers and standard setters can gain a better understanding of the

relevance of the financial statement format to disclosure. Additionally, the

designers of digital accounting protocols and standards, such as XBRL, can

reference the formats when there is a need to build structures into the protocols or

standards. Last, such understanding can assist various academic studies in the

 28

accounting domain. For instance, experimental studies in which the presentation

formats of financial statements are varied (e.g. Maines and McDaniel, 2000) can

be complemented by studies that make use of structural data extracted by our

system.

The evaluation of the results from the sample study configuration shows that

our template-based system is a potent research prototype that can be used in

connection with applications where intensive parsing of the EDGAR filings in

free-form text format is required. Moreover, the results also confirm that the

cocktail approach used to construct the templates is effective. A rough

comparison between the evaluation results of our system and those of FRAANK

shows a similar precision between the two systems for the extraction of the

financial numbers. However, very limited conclusions can be inferred from these

numbers since the nature of the two systems and the testing scope and testing

methods are different.

Our system is based on the KEA and thus requires the input of accounting

knowledge from the users. Such a requirement limits the use of the system to

experts. The most fundamental task of improving this system is to design a more

robust algorithm that is based on a set of well-defined rules or statistics to rank

the multiple groups of heuristics and select the most appropriate one “on the fly”

at run-time. Such an algorithm would significantly reduce the amount of input

from human experts and can eventually eliminate such input and transform this

system into an ATA based system.

 29

Our system has two technical limitations. First, the system lacks a user

friendly interface. We currently use a command-line based toolkit. This interface

is appropriate to the needs of a small group of users who know both accounting

and Perl programming language. Additionally, the efficiency of the file-system-

based data storage will decrease when the system is configured to process more

types of EDGAR filings. These two limitations can be addressed in future studies

by adding a GUI and using a relational database.

REFERENCES

American Institute of Certified Public Accountant. 2000. Accounting Trends and

Techniques. AICPA, New York.

Appelt D. E. and Israel D. 1999. Introduction to Information Extraction

Technology: A Tutorial Prepared for IJCAI-99. 16
th

 International Joint

Conference on Artificial Intelligence. http://www.ai.sri.com/~appelt/ie-

tutorial/IJCAI99.pdf. Stockholm.

Baeza-Yates, R. and B. Ribeiro-Neto.1999. Modern Information Retrieval. ACM

Press. New York.

Bovee, M., M. Ettredge, R. Srivastava, and M. Vasarhelyi. 2002. Does the Year

2000 XBRL Taxonomy Accommodate Current Business Financial

Reporting Practice? Journal of Information Systems 16 (2): 165-182.

___________, A. Kogan, K. Nelson, R. Srivastava and M. Vasarhelyi. 2005.

Financial Reporting and Auditing Agent with Net Knowledge (FRAANK)

and eXtensible Business Reporting Language (XBRL). Journal of

Information Systems 19 (1): 19-41.

 30

Douglas, S. and M. Hurst. 1997. Layout and Language: Preliminary investigations

in recognizing the structure of tables. Proceedings of ICDAR 1997,

August: 18-20.

__________, M. Hurst and D. Quinn. 1995. Using Natural Language Processing

for Identifying and Interpreting Tables in Plain Text. Fourth Annual

Symposium on Document .Analysis and Information Retrieval 535-545.

University of Nevada, Las Vegas.

Ferguson, D. 1997. Parsing Financial Statements Efficiently and Accurately

Using C and Prolog. Conference on Practical Applications of Prolog.

London, UK.

Fisher, I. E. 2004. On the Structure of Financial Accounting Standards to Support

Digital Representation, Storage, and Retrieval. Journal of Emerging

Technologies in Accounting. 1: 23-40.

Gerdes, J. Jr. 2000. Edgar-Analyzer: automating the analysis of corporate data

contained in the SEC's Edgar Database. Decision Support System, 35 (1):

7-9.

International Business Machine Corp. 1999. 10-K filing (1998).

http://edgar.sec.gov/Archives/edgar/data/51143/0001047469-99-

011848.txt.

Klink, S., A. Dengel and T. Kieninger. 2000. Document Structure Analysis Based

on Layout and Textual Features. Working Paper. German Research Center

for Artificial Intelligence, Kaiserslautern, Germany.

 31

Kogan, A., K. Nelson, R. Srivastava, M. Vasarhelyi, and M. Bovee. 2001. Design

and Applications of an Intelligent Financial Reporting and Auditing Agent

with Net Knowledge (FRAANK). Working Paper. Newark, NJ.

Kornfield, W. and J. Wattecamps. 1998. Automatically Locating, Extracting and

Analyzing Tabular data. 21st Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, 347-

348. Melbourne, Australia.

Levenshtein, V. I. 1966. Binary codes capable of correcting deletions, insertions

and reversals. Soviet Physics-Doklandy, 6: 707-710.

Liang, J. 1999. Document Structure Analysis and Performance Evaluation.

Doctoral Dissertation. University of Washington, Seattle.

Maines, L., and L. McDaniel. 2000. Effects of Comprehensive-Income

Characteristics on Nonprofessional Investors' Judgments: The Role of

Financial-Statement Presentation Format. The Accounting Review, 75(2):

1-24.

Nelson, K., A. Kogan, R. Srivastava, M. Vasarhelyi, and H. Lu. 2000. Virtual

auditing agents: the EDGAR Agent challenge. Decision Support Systems,

28 (3): 241-253.

Ng, H., C. Lim, and J. Koo. 1999. Learning to Recognize Tables in Free Text.

Proceedings of the 37th conference on Association for Computational

Linguistics: 443-450.

PWC Tech Center. 2003. A Technical Overview of the EdgarScan System.

http://edgarscan.pwcglobal.com/EdgarScan/edgarscan_arch.html.

 32

Pyreddy, P. and W. Croft. 1997. TINTIN: A System for Retrieval in Text Tables.

Proceedings of the Second ACM International Conference on Digital

Libraries: 193- 200.

U.S. Securities and Exchange Commission. 2000. HTML Tag and Attribute

Specifications for EDGAR Release 7.0.

http://www.sec.gov/info/edgar/ednews/edhtml.htm.

_______________________. 2003a. Important Information About EDGAR.

http://www.sec.gov/edgar/aboutedgar.htm.

_______________________. 2003b. Form Types Used for Electronic Filing on

EDGAR. http://www.sec.gov/info/edgar/forms/edgform.htm.

Vasarhelyi, M. and F. Halper. 1991. The continuous audit of online systems.

Auditing: A Journal of Practice and Theory, 10 (1): 110-125.

Wall, L., T. Christiansen, and R. L. Schwartz. 1996 Programming Perl, 2nd

Edition. Sebastopol, CA. O'Reilly and Associates.

Wang, Y. L. 2002. Document Analysis: Table Structure Understanding and Zone

Content Classification. Ph.D. Dissertation, University of Washington.

XBRL. 2000. XBRL Taxonomy: Financial Reporting for Commercial and

Industrial Companies, US GAAP. 2000-07-31.

http://www.xbrl.org/Taxonomy/us-gaap-ci-2000-07-31.pdf.

_____. 2002. XBRL Taxonomy: Financial Reporting for Commercial and

Industrial Companies, US GAAP. 2002-07-31.

http://www.xbrl.org/Taxonomy/us-gaap-ci-2002-07-31.pdf.

 33

Table 1: The Attributes Included in the Document Structure Profile

Category Attribute

Relative position of logical units

Relative position of the income statement table

Relative position of terms (e.g., CGS appears after Revenue)

The lead-in text (title, header, caption)

Text label of line items (usually Accounting Domain Specific,

e.g., CGS)

Special characters (e.g., line feed and "=".)

block sparsity (number of non-white character / total number of

characters)

block numeric-alpha ratio (number of numeric characters / total

number of characters)

Length of the section

Structural Left and right boundary of a block

Contextual

Semantic

Geometric

 34

Table 2: The Attributes Included in the Table Structure Profile

Category Attribute

Relative position of terms Contextual

Sub-totals

Text label of line items Semantic

Special characters

Left and right boundary of a column Structural

Indentation of each row

 35

Table 3: Evaluation of Locator Performance

Panel A: Sample Selection

Number of filings selected (approximately 1% of all the 74132 filings). 750

Filings do not contain income statements. 113

Filings with irregular file formats 12

Flings with unprocessable html or pdf formats 5

Filings with other irregularities that are unparsable. 4

Filings parsable. 616

Income statement extracted 603

Income statement correctly extracted 584

Panel B: Measurements

Item Exists Extracted Correct Recall Precision F-measure

Income statement 616 603 584 94.81% 96.85% 95.82%

 36

Table 4: Evaluation of Extractor Performance

Item Exists Extracted Correct Recall Precision F-measure

Revenues 574 562 545 94.95% 96.98% 95.95%

Cost of Goods Sold 383 368 360 93.99% 97.83% 95.87%

Gross Profit 267 265 258 96.63% 97.36% 96.99%

Operating Income 410 404 396 96.59% 98.02% 97.30%

Income Tax 422 413 402 95.26% 97.34% 96.29%

Net Income 595 597 584 98.15% 97.82% 97.98%

Pooled 2651 2609 2545 96.00% 97.55% 97.98%

Average* 95.93% 97.56% 96.73%

* Average is the arithmetic average of Recall, Precision and F-measure

 37

Figure 1*: The Income Statement Section from IBM's 1998 10-K Filing
 012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678

Line01: CONSOLIDATED STATEMENT OF EARNINGS

Line02: International Business Machines Corporation and Subsidiary Companies

Line03: <TABLE>

Line04: <CAPTION>

Line05: - ---

Line06: (Dollars in millions except per share amounts)

Line07: For the year ended December 31: Notes 1998 1997* 1996*

Line08: - ---

Line09: <S> <C> <C> <C> <C>

Line10: Revenue:

Line11: Hardware segments $35,419 $36,630 $36,634

Line12: Global Services segment 28,916 25,166 22,310

Line13: Software segment 11,863 11,164 11,426

Line14: Global Financing segment 2,877 2,806 3,054

Line15: Enterprise Investments segment/Other 2,592 2,742 2,523

Line16: - ---

Line17: Total revenue 81,667 78,508 75,947

Line18: - ---

Line19: Cost:

Line20:

Line21: Hardware segments 24,214 23,473 22,888

Line22: Global Services segment 21,125 18,464 16,270

Line23: Software segment 2,260 2,785 2,946

Line24: Global Financing segment 1,494 1,448 1,481

Line25: Enterprise Investments segment/Other 1,702 1,729 1,823

Line26: - ---

Line27: Total cost 50,795 47,899 45,408

Line28: - ---

Line29: Gross profit 30,872 30,609 30,539

Line30: - ---

Line31: Operating expenses:

Line32:

Line33: Selling, general and administrative R 16,662 16,634 16,854

Line34: Research, development and engineering S 5,046 4,877 5,089

Line35: - ---

Line36: Total operating expenses 21,708 21,511 21,943

Line37: - ---

Line38: Operating income 9,164 9,098 8,596

Line39: Other income, principally interest 589 657 707

Line40: Interest expense L 713 728 716

Line41: - ---

Line42: Income before income taxes 9,040 9,027 8,587

Line43: Provision for income taxes Q 2,712 2,934 3,158

Line44: - ---

Line45: Net income 6,328 6,093 5,429

Line46: Preferred stock dividends 20 20 20

Line47: - ---

Line48: Net income applicable to common shareholders $ 6,308 $ 6,073 $ 5,409

Line49: ===

Line50: Earnings per share of common stock--basic T $ 6.75 $ 6.18 $ 5.12

Line51: Earnings per share of common stock--assuming dilution T $ 6.57 $ 6.01 $ 5.01

Line52: ==

*: The line and column numbers are added by the author to facilitate discussion.

 38

Figure 2: Document Tree

Panel A: Physical Document Tree

Filing

Page

......

Page

......

Line/Rowr

Line/Row

Term/Word

Term/Word

Page

......

Block

Block

......

......

......

......

Panel B: Logical Document Tree

Filing

Logical Unit

......

Logical Unit

......

Logical Unit

Section

Logical Unit

TOC

......

Logical Unit

......

Header

Body

Caption Logical Row

Logical Row

.....

Logical Row

Logical Row

.....

Cell

.....

Cell

Paragraph

Line

Term/Word

Logical Unit

Section

......

Line Term/Word
Logical Unit

Paragraph

Logical Unit

Table

......

 39

Figure 3. The Architecture of the Extraction System *

Repository of

Classified

Extractions

Data Storage of

the

Edagr Filings

 Locator Extractor Structure

Classifier

Data

Preprocessing

Module

Knowledge

Engineering

Tool Kits

Repository of

Synonyms

Repository of

Doc. structure

Template

Repository of

Block

Templates

Repository of

Extracted Blocks

Date Files Core Logics Auxilary Module

Mismatch &

Error Logs

 Auxiliary Data

Store

Repository of

Normalized

Extraction

*. The Structure Classifier and Repository of Classified Extractions are used only in the sample study.

 40

Figure 4: Excerption of the Profile for HCA's 1995 10-K Filing
Block Separator:

 \n\n;

Relative Position of IS: ITEM 14

 After: Regular Paragraph

 Before: Balance Sheet

Lead-in Text:

 < COLUMBIA/HCA HEALTHCARE CORPORATION>

 \s+27CONSOLIDATED STATEMENT OF INCOME

Lead-out Text:

 \t\s+52======= ======= ======

IS Block Sparsity:

 0.6290

IS Block Num-Alfa Ratio:

 0.2131

Document Sparsity:

 0.7135

Document Num-Alfa Ratio:

 0.0486

Length of IS Block:

 59

Left Boundary of IS Block:

 1

Right Boundary of IS Block:

 78

 41

Figure 5*: Normalized Extraction of the Income Statement of IBM’s 10-K of 1998
Normalized Raw

Revenue

 Hardware segments

 Global Services segment

 Software segment

 Global Financing segment

 Enterprise Investments segment/Other

Cost

 Hardware segments

 Global Services segment

 Software segment

 Global Financing segment

 Enterprise Investments segment/Other

Gross profit

Operating expenses

 Selling, general and administrative

 Research, development and engineering

Operating income

Other income, principally interest

Interest expense

Income before income taxes

Provision for income taxes

Net income

Revenue:

Hardware segments

Global Services segment

Software segment

Global Financing segment

Enterprise Investments segment/Other

- --

Total revenue

- --

Cost:

Hardware segments

Global Services segment

Software segment

Global Financing segment

Enterprise Investments segment/Other

- --

Total cost

- --

Gross profit

- --

Operating expenses:

Selling, general and administrative

Research, development and engineering

- --

Total operating expenses

- --

Operating income

Other income, principally interest

Interest expense

- --

Income before income taxes

Provision for income taxes

- --

Net income

* Numerical cells omitted

